

0957-4166(94)00239-8

Synthesis of A Homochiral a, a-Disubstituted a, β-Diamino-acid

Raymond C F Jones*,^a, Alan K Crockett^a, David C Rees^{b,†} and Ian H Gilbert^{b,‡}

^aChemistry Department, University of Nottingham, Nottingham NG7 2RD, UK

^bParke-Davis Research Unit, Addenbrookes Hospital Site, Hills Road, Cambridge CB2 2QB, UK

Abstract: The synthesis of a homochiral α, α -disubstituted α, β -diamino-acid is described from norleucine using stereospecific alkylation of a homochiral oxazolidinone enolate; an optically active pseudotetrapeptide analogue of CCK-4 is prepared to show an application of such diamino-acids.

We have reported on our programme of synthesis of cyclic amidine-containing amino-acids 1, of interest both as pseudopeptides¹ (with amidine as an amide bond replacement) and as natural products (1; n = 2).² We wished to combine this strategy for peptide mimetics with the known ability of α, α -disubstituted amino-acids to limit conformational mobility,³ for example to favour reverse turns, and thus defined cyclic amidines such as the 4(5)-substituted 4(5)-carboxyimidazolines 2 as targets. We further required these molecules to have a defined single configuration at the pseudo- α -centre, C-4. A preliminary target was therefore the stereodefined synthesis of α, α -disubstituted α, β -diamino-acids 3. Our strategy, drawn out below, is the use of a homochiral amino-acid α -nucleophile synthon⁴ with a C+N electrophile. There is only one report of the use of these nucleophiles in α, β -diamino-acid preparation,⁵ for the special case of proline with the very reactive iminium electrophile, CH₂=N+Me₂. We report now our generally applicable preparation of an example of 3, having R² = (CH₂)₃Me, as either pure enantiomer, and the application of one enantiomer for the assembly of a homochiral CCK-4 mimetic.

We chose to use the oxazolidinone approach (Scheme 1). Thus *R*-norleucine **4a** was converted into the *N*-benzylidene imine (PhCHO, 1M NaOH aq.–EtOH; 95%), which on *N*-benzoylation (PhCOCl, CH₂Cl₂, –20°C) afforded the oxazolidinone (76%) as a mixture of two diastereoisomers **5a** and **6a** (1:3 by ¹H n.m.r. spectroscopic examination). Under these conditions of oxazolidinone assembly,^{6,7} the major product is the *anti*-isomer **6a** which can be isolated pure (56%), $[\alpha]_D^{25}$ –201.4 (*c* 1.17 in CHCl₃) on recrystallisation of the

Reagents: i, PhCHO, 1M NaOH aq.-EtOH; ii, PhCOCI, CH₂Cl₂, -20°C; then separate 5 and 6 by crystallisation; iii, 1M LiN(SiMe₃)₂, THF, -78°C \rightarrow -65°C, N-bromomethylphthalimide; iv, 40% aq. HBr, reflux.

mixture.⁸ The *anti* relative configuration of **6a** was confirmed by observation in the ¹H n.m.r. spectrum of n.O.e. enhancements of the signals at δ 1.45 and 1.75, CH₂, on irradiation of the signal at δ 6.9, C-2(H), and of the signal at δ 5.15, C-4(H), on irradiation at δ 7.4, Ar-H. The pure enantiomeric oxazolidinone **6b**, $[\alpha]_D^{23}$ +201.4 (*c* 1.02 in CHCl₃), was similarly prepared from *S*-norleucine **4b** via the imine (99%), acylation (75%) and crystallisation of **6b** (56%) from the 3:1 mixture with its epimer **5b**.

 $C(\alpha)$ -Alkylation of the oxazolidinones was achieved under strongly basic conditions (lithium hexamethyldisilazide, THF, $-78^{\circ} \rightarrow -65^{\circ}$ C to ensure solution of the anion) with N-bromomethylphthalimide as electrophile; loss of the enolate orange colour evidenced alkylation. Thus oxazolidinone **6a** afforded 4,4disubstituted derivative **7a** (89%), $[\alpha]_D^{23} - 174.8$ (c 1.0 in CHCl₃), whilst **6b** gave **7b** (88%), $[\alpha]_D^{25} + 174.9$ (c 0.55 in CHCl₃). That alkylation occurs *anti* to the 2-phenyl substituent⁶ was confirmed by observation in the ¹H n.m.r. spectrum of, *inter alia*, an n.O.e. enhancement of the signals at δ 4.3 and 4.7 for the CH₂phthaloyl protons on irradiation of the signal at δ 6.4, C-2(H), and *vice versa*. Thus aminoalkylation of the original norleucine residue has been accomplished with overall inversion. The α, α -disubstituted α, β diamino-acid was liberated in one step by an acidic hydrolysis [40% w/v aq. HBr at reflux, 3h; then Amberlite IR-120(H)] that cleaved the heterocyclic ring and the N-benzoyl and N-phthaloyl protecting groups to give, respectively, *R*-enantiomer **8a** (86%), $[\alpha]_D^{25} + 5.9$ (c 1.01 in H₂O),⁹ from **7a**, and *S*enantiomer **8b** (86%), $[\alpha]_D^{27} - 5.7$ (c 0.28 in H₂O), from **7b**. The pure *R*-enantiomer **8a** was converted into the methyl ester hydrochloride salt (AcCl, MeOH, reflux 16 h; 2-3 successive treatments were required), and thence by basification (NaHCO₃ aq.) into the free diamino ester **9** (75%).⁹

The application of the optically pure α,α -disubstituted α,β -diamino-acid was illustrated by the conversion of *R*-enantiomer **8a** into an optically active pseudotetrapeptide Z-Trp- ψ [Im]Nle-Asp-Phe-NH₂ **10**, of interest as an analogue of CCK-4, the C-terminal tetrapeptide H-Trp-Met-Asp-Phe-NH₂ of cholecystokinin.^{1b,10}.

Thus the piperidine thioamide 11 was prepared (Scheme 2) from N^{α}-benzyloxycarbonyl-S-tryptophan as reported previously (72% overall). S-Methylation (MeI, neat, reflux 16 h) afforded a thioimidate that was treated directly with *R*-diamino-ester 9 (MeOH, reflux) to give the dihydroimidazole 12 as an inseparable 1:1 mixture of diastereoisomers, epimeric at the α -carbon centre of the tryptophan residue. Proton exchange at the C-atom attached to C-2 of dihydroimidazoles is well precedented.^{1,11} Protection of the amidine ring (Boc₂O, NaHCO₃, aq. THF) to remove its basic/nucleophilic properties, was necessary for further reactions; chromatographic separately.^{12,13} Quantitative hydrolysis at the C-terminus (0.1M LiOH aq.-THF) was followed by generation of an active ester (pentafluorophenol, DCC, EtOAc; 86% in each series) and coupling with H-Asp-Phe-NH₂ (Et₃N, DMF) to afford the separate protected pseudotetrapeptide diastereoisomers **14a/b** (97 and 62%, not necessarily respectively). Deprotection at the N-terminus (H₂, Pd(OH)₂, 50 psi; 98% in each series) and of the cyclic amidine (TFA, thioanisole & EtSH as cation scavengers; 84% in each series) afforded the separate pseudotetrapeptide isomers **10a** and **10b** as trifluoroacetate salts.¹⁴

We have thus demonstrated a stereoselective route to α -quaternary α,β -diamino-acids, useful in the assembly of modified peptides and analogues. The support of SERC and Parke-Davis Neuroscience Research Centre (studentship to A.K.C.) is gratefully acknowledged.

(Z = benzyloxycarbonyl; Boc = t-butoxycarbonyl; Ind = 3-indolyl) Scherne 2

Reagents: i, pentafluorophenol, DCC, CH₂Cl₂, 0°C; then piperidine, 0°C; ii, Lawesson's reagent, toluene reflux; iii, Mel neat, reflux 16h; then diamino-ester 9, MeOH, reflux 16h; iv Boo₂O, NaHCO₃, aq.-THF; then separation by column chromatography; v, 0.1M LiOH aq.-THF; vi, pentafluorophenol, DCC, EtOAc; then H-Asp-Phe-NH₂ Et₃N, DMF; vii, H₂, 50 psi, Pd(OH)₂ on C, MeOH; viii, TFA, thioanisole & ethanedithiol, 0°C \rightarrow 25°C.

REFERENCES AND NOTES:

- [†] Current address: Organon Laboratories, Newhouse, Lanarkshire, ML1 5SH, Scotland
- Current address: Welsh School of Pharmacy, University of Wales College of Cardiff, Redwood Building, King Edward VII Avenue, Cardiff, CF1 3XF
- (a) Jones, R. C. F.; Ward, G. J. Tetrahedron Lett., 1988, 29, 3853-3856; (b) Gilbert, I.; Rees, D. C.; Richardson, R. S. Tetrahedron Lett., 1991, 32, 2277-2280.
- 2. Jones, R. C. F.; Crockett, A. K. Tetrahedron Lett., 1993, 34, 7459-7462, and references therein.
- 3. See for example: Toniolo, C. Janssen Chimica Acta, 1993, 11, 10-16, and references therein.
- 4. For a survey of amino-acid enolate equivalents, see: Williams, R. M. Synthesis of Optically Active α-Amino Acids; Pergamon Press: Oxford. 1989; pp. 1-95.
- 5. Seebach, D.; Boes, M.; Naef, R.; Schweizer, W. B. J. Am. Chem. Soc., 1983, 105, 5390-5398.
- 6. Fadel, A.; Salaun, J. Tetrahedron Lett., 1987, 28, 2243-2246.
- The relative stereochemistry of the major oxazolidinone diastereoisomer in such cyclizations varies with the aldehyde, the acylating agent and the order of assembly of the components: cf. Seebach, D.; Fadel, A. Helv. Chim. Acta, 1985, 68, 1243-1250; Karady, S.; Amato, J. S.; Weinstock, L. M. Tetrahedron Lett., 1984, 25, 4337-4340.
- All new compounds gave spectral data (IR, UV, NMR, MS) in accord with the assigned structure, and satisfactory combustion analysis or accurate mass measurement.
- Selected data for 8a: v_{max}/cm⁻¹ 1600; δ_H (300MHz; D₂O) 1.1 (3H, t, CH₃), 1.4-1.6 (4H, m, 2 x CH₂), 1.85 (1H, m, CH₂CHHCN), 2.05 (1H, m, CH₂CHHCN), 3.25 (2H, dd, CH₂NH₂). For 9: v_{max}/cm⁻¹ 3504 (NH), 2958, 1723 (CO); δ_H (300MHz; D₂O) 0.89 (3H, t, CH₃), 1.1-1.6 (6H, m, 3 x CH₂), 2.8 (2H, dd, CH₂NH₂), 3.75 (3H, s, OCH₃).
- Martinez, J. in Comprehensive Medicinal Chemistry; Hansch, C.; Sammes, P. G.; Taylor, J. B. Eds.; Pergamon Press: Oxford. 1990; vol 3, pp. 929-939.
- 11. Anderson, M. W.; Jones, R. C. F.; Saunders, J. J. Chem. Soc., Perkin Trans. 1, 1986, 205-209, and refs. therein.
- 12. The two isomers 13a and 13b were *diastereo* isomers, and a single *regio* isomer was formed with respect to the t-butoxycarbonyl (Boc) group. This was confirmed by acidic removal (TFA) of the Boc function from the separated isomers 13a and 13b which gave in each case a single product dihydroimidazole salt distinct from the other, i.e. the separate diastereo isomers of 12 (*cf.* also ref. 14). The location of the Boc protecting group (N-1 vs. N-3) is not yet known, and is drawn arbitrarily in Scheme 2 on the least hindered nitrogen atom.
- 13. It was not possible to determine which of the separated diastereoisomers 13a and 13b had the S and which the R configuration, at the tryptophan α -carbon centre.
- 14. Whilst the dihydroimidazoles 10 are kept as salts, no epimerisation takes place at the tryptophan α carbon centre.

(Received in UK 5 July 1994)